SAMURAI - NIMS Researchers Database

HOME > プロフィール > 松田 翔一

[論文] | [書籍] | [会議録] | [口頭発表] | [その他の文献] | [公開特許出願]

論文 TSV

2024
  1. Shoichi Matsuda, Eiki Yasukawa, Shin Kimura, Shoji Yamaguchi, Kohei Uosaki. Evaluation of performance metrics for high energy density rechargeable lithium–oxygen batteries. Faraday Discussions. 248 (2024) 341-354 10.1039/d3fd00082f Open Access
  2. Arghya Dutta, Emiko Mizuki, Yuka Tomori, Shoichi Matsuda. Optimizing Discharge Rate for Li Metal Stability in Rechargeable Li|NMC Batteries under Lean Electrolyte Condition. ACS Applied Energy Materials. 7 [9] (2024) 3824-3830 10.1021/acsaem.4c00180 Open Access
  3. Yanan Gao, Hitoshi Asahina, Shoichi Matsuda, Hidenori Noguchi, Kohei Uosaki. Nature of Li2O2 and its relationship to the mechanisms of discharge/charge reactions of lithium–oxygen batteries. Physical Chemistry Chemical Physics. 26 [18] (2024) 13655-13666 10.1039/d4cp00428k Open Access
  4. Shoichi Matsuda. New Insights into Fundamental Processes and Physical Degradation Mechanisms in Rechargeable Lithium‐Oxygen Batteries Providing Suitably High Energy Densities. ChemElectroChem. 11 [6] (2024) e202300605 10.1002/celc.202300605 Open Access
  5. Jittraporn Saengkaew, Emiko Mizuki, Shoichi Matsuda. Performance evaluation of lithium metal rechargeable batteries with a lithium excess cation-disordered rocksalt based positive electrode under high mass loading and lean electrolyte conditions. Energy Advances. 3 [1] (2024) 248-254 10.1039/d3ya00281k Open Access
  6. Wei Yu, Zhaohan Shen, Takeharu Yoshii, Shinichiroh Iwamura, Manai Ono, Shoichi Matsuda, Makoto Aoki, Toshihiro Kondo, Shin R. Mukai, Shuji Nakanishi, Hirotomo Nishihara. Hierarchically Porous and Minimally Stacked Graphene Cathodes for High‐Performance Lithium–Oxygen Batteries. Advanced Energy Materials. 14 [2] (2024) 2303055 10.1002/aenm.202303055 Open Access
2023
  1. Ryo Tamura, Koji Tsuda, Shoichi Matsuda. NIMS-OS: an automation software to implement a closed loop between artificial intelligence and robotic experiments in materials science. Science and Technology of Advanced Materials: Methods. 3 [1] (2023) 2232297 10.1080/27660400.2023.2232297 Open Access
  2. Shoichi MATSUDA. Rechargeable Lithium-Air Batteries with Practically High Energy Density. Electrochemistry. 91 [10] (2023) 23-00061 10.5796/electrochemistry.23-00061 Open Access
  3. Arghya Dutta, Emiko Mizuki, Shoichi Matsuda. High‐Rate Discharge Minimizes Volume Expansion of Lithium Metal Electrodes under Lean Electrolyte and High Areal Capacity Conditions. Batteries & Supercaps. 6 [11] (2023) e202300309 10.1002/batt.202300309 Open Access
  4. Marcela Calpa, Kei Kubota, Emiko Mizuki, Manai Ono, Shoichi Matsuda, Kazunori Takada. Voltage hysteresis hidden in an asymmetric reaction pathway. Energy Storage Materials. 63 (2023) 103051 10.1016/j.ensm.2023.103051
  5. Jittraporn Saengkaew, Takashi Kameda, Shoichi Matsuda. Hierarchical porous-structured self-standing carbon nanotube electrode for high-power lithium–oxygen batteries. Materials Advances. 4 [19] (2023) 4417-4424 10.1039/d3ma00237c Open Access
  6. Manai Ono, Jittraporn Saengkaew, Shoichi Matsuda. Poor Cycling Performance of Rechargeable Lithium–Oxygen Batteries under Lean‐Electrolyte and High‐Areal‐Capacity Conditions: Role of Carbon Electrode Decomposition. Advanced Science. 10 [24] (2023) 2300896 10.1002/advs.202300896 Open Access
  7. Yoshitaka Tateyama, Akiko Kagatsume, Masaru Yao, Shoichi Matsuda, Kohei Uosaki. Exploration of Organic Cathode Active Materials with High Energy Densities for Li-Ion Batteries via First-Principles Calculations. The Journal of Physical Chemistry C. 127 [27] (2023) 12867-12873 10.1021/acs.jpcc.3c02131
  8. Shoichi Matsuda, Shin Kimura, Kohei Uosaki. Hidden Macroscopic Degradation Behavior in Rechargeable Lithium–Oxygen Batteries under Lean Electrolyte and High Areal Capacity Conditions. The Journal of Physical Chemistry C. 127 [25] (2023) 11822-11828 10.1021/acs.jpcc.3c01094 Open Access
  9. Mehdi Estili, Shoichi Matsuda, Lulu Jia, Nobuyuki Sakai, Renzhi Ma, Tohru S. Suzuki, Kohei Uosaki. CNT–MXene ultralight membranes: fabrication, surface nano/microstructure, 2D–3D stacking architecture, ion-transport mechanism, and potential application as interlayers for Li–O2 batteries. Nanoscale. 15 [18] (2023) 8289-8303 10.1039/d3nr00712j
  10. Manai Ono, Shoichi Matsuda. Positive Electrode Reaction of Lithium–Oxygen Batteries with NO3–/Br– Redox Mediator under High Areal Capacity and Lean Electrolyte Conditions. The Journal of Physical Chemistry C. 127 [13] (2023) 6117-6124 10.1021/acs.jpcc.2c07847 Open Access
  11. Manai Ono, Shoichi Matsuda. Lithium Nitrate/Amide-Based Localized High Concentration Electrolyte for Rechargeable Lithium–Oxygen Batteries under High Current Density and High Areal Capacity Conditions. ACS Applied Energy Materials. 6 [6] (2023) 3357-3365 10.1021/acsaem.2c04067 Open Access
  12. Shoichi Matsuda, Manai Ono, Hitoshi Asahina, Shin Kimura, Emiko Mizuki, Eiki Yasukawa, Shoji Yamaguchi, Yoshimi Kubo, Kohei Uosaki. Chemical Crossover Accelerates Degradation of Lithium Electrode in High Energy Density Rechargeable Lithium–Oxygen Batteries. Advanced Energy Materials. 13 [11] (2023) 2203062 10.1002/aenm.202203062 Open Access
  13. Shoichi Matsuda, Manai Ono, Anna Myojin. Irreversible Structural Changes in Lithium Electrodes Accelerate Capacity Fading in Lithium-Metal-Based Rechargeable Batteries. ACS Applied Energy Materials. 6 [4] (2023) 2524-2530 10.1021/acsaem.2c03945 Open Access
  14. Shuntaro Miyakawa, Masatoshi Goto, Manai Ono, Takaya Saito, Shoji Yamaguchi, Shoichi Matsuda. Metal-Coated Polymer Fiber Mesh as an Ultralightweight Gas-Diffusible Current Collector for High-Energy-Density Rechargeable Lithium–Oxygen Batteries. ACS Applied Energy Materials. 6 [3] (2023) 1906-1912 10.1021/acsaem.2c03841 Open Access
  15. Jittraporn Saengkaew, Takashi Kameda, Manai Ono, Emiko Mizuki, Shintaroh Nagaishi, Shinichiroh Iwamura, Shin R. Mukai, Shoichi Matsuda. Carbon Gel-Based Self-Standing Membranes as the Positive Electrodes of Lithium–Oxygen Batteries under Lean-Electrolyte and High-Areal-Capacity Conditions. The Journal of Physical Chemistry C. 127 [2] (2023) 939-948 10.1021/acs.jpcc.2c06979 Open Access
  16. Ryota Tamate, Shoichi Matsuda. Asymmetric Volume Expansion of the Lithium Metal Electrode in Symmetric Lithium/Lithium Cells under Lean Electrolyte and High Areal Capacity Conditions. ACS Applied Energy Materials. 6 [1] (2023) 573-579 10.1021/acsaem.2c03788
2017
  1. Shoichi Matsuda, Yoshimi Kubo, Kohei Uosaki, Shuji Nakanishi. Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode. Carbon. 119 (2017) 119-123 10.1016/j.carbon.2017.04.032
  2. Shoichi Matsuda, Kohei Uosaki, Shuji Nakanishi. Enhanced energy capacity of lithium-oxygen batteries with ionic liquid electrolytes by addition of ammonium ions. Journal of Power Sources. 356 (2017) 12-17 10.1016/j.jpowsour.2017.04.069
  3. Shoichi Matsuda, Kohei Uosaki, Shuji Nakanishi. Improved charging performance of Li–O 2 batteries by forming Ba-incorporated Li 2 O 2 as the discharge product. Journal of Power Sources. 353 (2017) 138-143 10.1016/j.jpowsour.2017.04.012
  4. Hiroyuki Koshikawa, Shoichi Matsuda, Kazuhide Kamiya, Yoshimi Kubo, Kohei Uosaki, Kazuhito Hashimoto, Shuji Nakanishi. Effects of contaminant water on coulombic efficiency of lithium deposition/dissolution reactions in tetraglyme-based electrolytes. Journal of Power Sources. 350 (2017) 73-79 10.1016/j.jpowsour.2017.03.041
  5. Shoichi Matsuda, Yoshimi Kubo, Kohei Uosaki, Shuji Nakanishi. Insulative Microfiber 3D Matrix as a Host Material Minimizing Volume Change of the Anode of Li Metal Batteries. ACS Energy Letters. 2 [4] (2017) 924-929 10.1021/acsenergylett.7b00149
  6. Shoichi Matsuda, Yoshimi Kubo, Kohei Uosaki, Shuji Nakanishi. Potassium Ions Promote Solution-Route Li2O2 Formation in the Positive Electrode Reaction of Li–O2 Batteries. The Journal of Physical Chemistry Letters. 8 [6] (2017) 1142-1146 10.1021/acs.jpclett.7b00049

書籍 TSV

会議録 TSV

口頭発表 TSV

2015
  1. 松田 翔一, 森重樹, 久保 佳実, 魚崎 浩平, 橋本和仁, 中西周次. リチウム空気電池におけるコバルトフタロシアニン類似体の溶解性触媒特性. 2015 Materials Research Society Fall Meeting . 2015
  2. 松田 翔一. リチウム空気電池におけるコバルトフタロシアニン類似体の溶解性触媒特性. 第2回 東北大&GREEN合同シンポジウム(第11回 GREENシンポジウム). 2015

その他の文献 TSV

公開特許出願 TSV

  1. リン含有リチウムルテニウム系複合酸化物及びその製造方法、並びにそれを用いるリチウムイオン二次電池用正極及びリチウムイオン二次電池 (2024)
  2. 炭素構造体、空気電池、及び炭素構造体の製造方法 (2024)
  3. 多孔炭素膜製造用組成物、及び多孔炭素膜製造用シート (2023)
  4. 空気電池正極用の多孔炭素膜の製造方法、及びその方法で得られる多孔炭素膜を正極に用いた空気電池の製造方法 (2023)
  5. リチウム空気電池及びこれに用いる酸素流路 (2023)
  6. 最適化システム、最適化方法、プログラム、リチウム二次電池用電解液、及び、リチウム二次電池 (2022)
  7. 正極への電解液注液方法及びそれを用いる空気電池の製造方法 (2022)
  8. 空気電池の正極用多孔炭素膜電極、及びそれを用いた空気電池 (2022)
  9. 電解液を含む正極及びそれを用いる空気電池、並びに正極への電解液注液方法及びそれを用いる空気電池の製法 (2022)
  10. 空気電池正極用の炭素多孔体の製造方法 (2022)
  11. 空気電池正極用のカーボンナノチューブ膜及びその製造方法、並びにカーボンナノチューブ膜を正極に用いた空気電池 (2022)
  12. 空気電池正極用のカーボンナノチューブ膜の製造方法、並びにカーボンナノチューブ膜及びこれを正極に用いた空気電池 (2022)
  13. リチウム空気電池及びその製造方法 (2022)
  14. リチウム空気電池の充電方法 (2022)
  15. 空気電池用酸素流路及び集電体、並びに空気電池 (2022)
  16. 空気電池用酸素流路及び集電体、並びに空気電池 (2022)
  17. リチウム空気電池用電解液およびそれを用いたリチウム空気電池 (2021)
  18. リチウム空気電池用電解液およびそれを用いたリチウム空気電池 (2021)
  19. 多孔炭素構造体、その製造方法、それを用いた正極材及びそれを用いた電池 (2021)
  20. 電気化学測定システム、及び電気化学測定方法 (2020)
  21. 自動電気化学測定システム、および、電気化学特性を自動測定する方法 (2020)
  22. リチウム空気電池用電解液およびそれを用いたリチウム空気電池 (2020)
  23. 電気化学測定システム、電気化学探索方法、リアクタ、及びマイクロプレート (2019)
  24. リチウム空気電池用電解液 (2018)

▲ページトップへ移動