HOME > プロフィール > タンクス ジョナサン デビッド
研究内容
- Keywords
高分子、ナノコンポジット、複合材料、力学、劣化、リサイクル
出版物2004年以降のNIMS所属における研究成果や出版物を表示しています。
論文
- Jonathon Tanks, Kenji Tamura, Kimiyoshi Naito, Thi Thi Nge, Tatsuhiko Yamada. Durable and recyclable biomimetic glycol lignin/polyolefin compounds for a circular economy. Journal of Materials Chemistry A. 12 [5] (2024) 3014-3025 10.1039/d3ta06230a
- Jonathon Tanks, Kenji Tamura, Kimiyoshi Naito, Thi Thi Nge, Tatsuhiko Yamada. Glycol lignin/MAH-g-PP blends and composites with exceptional mechanical properties for automotive applications. Composites Science and Technology. 238 (2023) 110030 10.1016/j.compscitech.2023.110030
- Jonathon Tanks, Kimiyoshi Naito, Kenji Tamura. Rigid epoxy networks with very high intrinsic fracture toughness using a piperazine-based in-situ polymerization strategy. Materials Letters. 335 (2023) 133821 10.1016/j.matlet.2023.133821
口頭発表
- 田村 堅志, タンクス ジョナサン デビッド, 赤川 達哉. 改質リグニンを導入した高性能複合材料. 「GREEN MATERIAL(グリーンマテリアル)」 2024. 2024
- 赤川 達哉, タンクス ジョナサン デビッド, 佐久間 博, 内藤 公喜, 渡邊 雄二郎, 田村 堅志. 粘土―バイオマスポリアミドナノコンポジットの熱老化性. 第66回粘土科学討論会. 2023
- 赤川達哉, タンクス ジョナサン デビッド, 内藤 公喜, ネーティティ, 山田竜彦, 渡邊雄二郎, 田村 堅志. グリコールリグニン添加によるポリアミド6の熱安定性. 日本材料科学会 2023年度学術講演大会. 2023
所属学会
高分子学会
構造材料研究センター
Sustainable and multifunctional polymeric composites
Thermoplastic polymer, Crosslinked polymer, Biomass, Nanosheets, Interface
概要
• Thermoplastic composites contaning biomass for sustainable automobiles
• Polymers with high intrinsic fracture toughness for structural applications
• Nanocomposites with designed functionality (conductivity, transparency, etc)
• 2D materials and polymers with reversible bonding for advanced applications
新規性・独創性
• Simultaneously improve mechanical properties while utilizing renewable biomass.
• Realize high-toughness polymers without relying on dispersed fillers.
• Stimuli-responsive nanomaterials facilitate controlled polymerization/assembly.
内容
Structural applications require robust mechanical properties (strength, modulus, toughness) and environmental resistance (heat, light, moisture). We try to improve the structural performance of polymeric materials by controlling the chemical and physical structures (nano/meso). For example: modifying the network structure of crosslinked polymers to improve rate-dependent behavior; blending renewable biomass with conventional polymers like polyolefins to create mechanically robust, sustainable composites for automobiles; functionalizing inorganic layered materials with dynamic covalent bonds facilitates in-situ polymerization and photo-controllable reversible functionalization. Current and future work focuses on the development of sustainable, multifunctional polymeric composites for advanced structures and other applications.
まとめ
Using various approaches to design and control the chemical or physical microstructure of polymers and their composites, we can create high-performance materials for a wide range of structural applications. My future focus is on polymeric composites that can solve environmental and energy problems.