HOME > プロフィール > タンクス ジョナサン デビッド
研究内容
- Keywords
高分子、ナノコンポジット、複合材料、力学、劣化、リサイクル
出版物2004年以降のNIMS所属における研究成果や出版物を表示しています。
論文
- Jonathon Tanks, Kenji Tamura, Kimiyoshi Naito, Thi Thi Nge, Tatsuhiko Yamada. Durable and recyclable biomimetic glycol lignin/polyolefin compounds for a circular economy. Journal of Materials Chemistry A. 12 [5] (2024) 3014-3025 10.1039/d3ta06230a Open Access
- Jonathon Tanks, Kenji Tamura, Kimiyoshi Naito, Thi Thi Nge, Tatsuhiko Yamada. Glycol lignin/MAH-g-PP blends and composites with exceptional mechanical properties for automotive applications. Composites Science and Technology. 238 (2023) 110030 10.1016/j.compscitech.2023.110030 Open Access
- Jonathon Tanks, Kimiyoshi Naito, Kenji Tamura. Rigid epoxy networks with very high intrinsic fracture toughness using a piperazine-based in-situ polymerization strategy. Materials Letters. 335 (2023) 133821 10.1016/j.matlet.2023.133821 Open Access
口頭発表
- 丸山 海, タンクス ジョナサン デビッド, 佐久間 博, 渡邊雄二郎, 田村 堅志. 粘土/ポリアミド11ナノコンポジットの熱劣化挙動. 第16回日本複合材料会議(JCCM-16). 2025
- タンクス ジョナサン デビッド, 田村 堅志, 内藤 公喜. 熱伝導性ポリマーを用いたナノ複合材の作製と特性評価. 第16回日本複合材料会議 (JCCM-16). 2025
- タンクス ジョナサン デビッド, 田村 堅志, 内藤 公喜. チューナブル機械的特性を有する高熱伝導性ポリマーの創成. 第33回ポリマー材料フォーラム. 2024
公開特許出願
- ポリオレフィン組成物、及びその成形体 (2024)
- リグニン含有ポリアミド樹脂組成物、及びその成形体 (2025)
- 熱伝導性エポキシ系熱可塑性樹脂、該樹脂を成形した成形体、及び該成形体を含む電子機器 (2025)
所属学会
高分子学会
構造材料研究センター
Sustainable and multifunctional polymeric composites
Thermoplastic polymer, Crosslinked polymer, Biomass, Nanosheets, Interface
概要
• Thermoplastic composites contaning biomass for sustainable automobiles
• Polymers with high intrinsic fracture toughness for structural applications
• Nanocomposites with designed functionality (conductivity, transparency, etc)
• 2D materials and polymers with reversible bonding for advanced applications
新規性・独創性
• Simultaneously improve mechanical properties while utilizing renewable biomass.
• Realize high-toughness polymers without relying on dispersed fillers.
• Stimuli-responsive nanomaterials facilitate controlled polymerization/assembly.
内容

Structural applications require robust mechanical properties (strength, modulus, toughness) and environmental resistance (heat, light, moisture). We try to improve the structural performance of polymeric materials by controlling the chemical and physical structures (nano/meso). For example: modifying the network structure of crosslinked polymers to improve rate-dependent behavior; blending renewable biomass with conventional polymers like polyolefins to create mechanically robust, sustainable composites for automobiles; functionalizing inorganic layered materials with dynamic covalent bonds facilitates in-situ polymerization and photo-controllable reversible functionalization. Current and future work focuses on the development of sustainable, multifunctional polymeric composites for advanced structures and other applications.
まとめ
Using various approaches to design and control the chemical or physical microstructure of polymers and their composites, we can create high-performance materials for a wide range of structural applications. My future focus is on polymeric composites that can solve environmental and energy problems.