High-pressure synthesis of novel nitrides for semiconductor, 2D devices and hard-materials

Keywords: Ultra high-pressure, Metathesis reaction, Transition metal nitrides

Fumio Kawamura
Exploring Function Field / High Pressure Group
KAWAMURA.Fumio@nims.go.jp | https://samurai.nims.go.jp/profiles/kawamura_fumio

Background
- Necessity of new hard materials with popularization of new structural materials such as CFRP
- Prediction of the presence of novel nitride semiconductors that can be synthesized under high pressure
- Necessity of development of new two-dimensional layered material.

Aim
- Development of novel super hard-materials using high-pressure metathesis reaction.
- Synthesis of high-quality nitride semiconductors which is expected for next generation devices under high-pressure.
- Growth of single crystal of two-dimensional materials via the high-pressure process.

Development of next generation nitride semiconductors

- **ZnSnN₂**: Nitride semiconductor
 - Bandgap: tunable (1-2 eV)
 - Trivalent cation site in GaN is displaced with Zn and Sn alternatively.
 - High-quality crystal could be obtained by proceeding the above chemical reaction under high-pressure.
 - The synthesis condition of ZnSnN₂ crystal is not so severe, showing the possibility of mass production.

Development of 2D materials
- Next generation materials for electronics such as Graphene and MoS₂.
- High-pressure techniques are applied for the synthesis of new 2D materials ⇒ synthesis of ReN₂.

Development of superhard materials
- With popularization of difficult-to-cut materials such as CFRP, new superhard materials are required.
- Investigation of change in the recovered products according to the synthesis conditions.

Publications

Applied area and future prospects
- Evaluation of pn junction characteristics of ZnSnN₂ semiconductor.
- Exploring of new two-dimensional transition metal nitride crystals.
- Cutting test for application as hard material.

Issues for technology transfer
- Improvement of reproducibility of electrical properties of ZnSnN₂ semiconductors.
- Theoretical interpretation of synthesis conditions for transition metal nitride.
- Searching of optimum sintering conditions for nitride-hard-materials.